Publications

Publication list (in PDF format): Link to PDF

Preprints

Peer-reviewed Publications

Energy conservation for weak solutions of incompressible Newtonian fluid equations in Hölder spaces with Dirichlet boundary conditions in the half-space

Published in Mathematische Annalen, 2024

Download paper here

Recommended citation: Berselli, L.C., Kaltenbach, A., and Růžička, M. Energy conservation for weak solutions of incompressible Newtonian fluid equations in Hölder spaces with Dirichlet boundary conditions in the half-space. Math. Ann. (2024). https://doi.org/10.1007/s00208-024-03065-7 https://doi.org/10.1007/s00208-024-03065-7

Finite element discretization of the steady, generalized Navier-Stokes equations with inhomogeneous Dirichlet boundary conditions

Published in SIAM Journal on Numerical Analysis, 2023

Download paper here

Recommended citation: Jeßberger, J., Kaltenbach, A. Finite element discretization of the steady, generalized Navier–Stokes equations with inhomogeneous Dirichlet boundary conditions. SIAM J. Numer. Anal. 62:4, 1660-1686 (2024). https://doi.org/10.1137/23M1607398 https://epubs.siam.org/doi/abs/10.1137/23M1607398

Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure

Published in ESAIM: Mathematical Modelling and Numerical Analysis (ESAIM: M2AN), 2023

Download paper here

Recommended citation: Kaltenbach, A., Růžička, M. Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure. ESAIM: Math. Model. Numer. Anal. 57(3), 1381–1411 (2023). https://doi.org/10.1051/m2an/2023028 https://doi.org/10.1051/m2an/2023028

Existence of steady solutions for a model for micropolar electrorheological fluid flows with not globally log-Hölder continuous shear exponent

Published in Journal of Mathematical Fluid Mechanics, 2023

Download paper here

Recommended citation: Kaltenbach, A., Růžička, M. Existence of steady solutions for a model for micropolar electrorheological fluid flows with not globally log-Hölder continuous shear exponent. J. Math. Fluid Mech. 25:40 (2023). https://doi.org/10.1007/s00021-023-00782-y https://doi.org/10.1007/s00021-023-00782-y

On the existence of weak solutions for a family of unsteady rotational Smagorinsky models

Published in Pure and Applied Functional Analysis, 2022

Download paper here

Recommended citation: Berselli, L. C., Kaltenbach, A., Lewandowski, R., Růžička, M. On the existence of weak solutions for a family of unsteady rotational Smagorinsky models. Pure Appl. Funct. Anal. 8:1, 83--102 (2023). http://yokohamapublishers.jp/online2/oppafa/vol8/p83.html http://yokohamapublishers.jp/online2/oppafa/vol8/p83.html

Monographs

Book Contributions

Book Publications

PhD Thesis