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General objective

1. A posteriori error identities
on the basis of
continuous convex duality.

Foo)

—F* (%)

ptzot(vvy) = W;ap(va y)

2. Numerically practicable
a posteriori error identities
on the basis of
discrete convex duality.
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A priori error analysis
and
a posteriori error analysis



Concepts of a priori and a posteriori error analysis

¢ Continuous problem: Seek u € X s.t.

I(u) = infI(v),

veX

where [: X — RU {+o0}.

¢ Discrete problem: Seek u, € X, (Z X) s.t.
In(up) = inf Iy(vy),
h(Un) i h(Vh)
where [,: Xp — R U {+o0}.
¢ A priori error estimate: (continuous into discrete)

independent of uy,
42 e, ) < () = (

dependent of u
where

° p,zh : Xph x X — R is a discrete distance measure;

o M : X — X, a (quasi-)interpolation operator;

° 77/2,, : Xn = Rx>o an a priori error estimator.



Concepts of a priori and a posteriori error analysis

¢ A posteriori error estimate: (discrete into continuous)
independent of u
pr (u, Myun) < i (Mhup) = ( )

dependent of uj,
where

° pf: X x X — R>q is a distance measure;
° I'Iﬁ : X — X a post-processing operator;
ot X — R>o an a posteriori error estimator.

¢ Reliability/Efficiency: An a posteriori error estimator is called’

o reliable, if

2
2 5% 21X U/
pir(u, Myup) S i (Mpup);

NN i
reliability

TWe write A < Bif A < cB for a constant that does not depend on h > 0.
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Concepts of a priori and a posteriori error analysis

¢ A posteriori error estimate: (discrete into continuous)
independent of u
pr (u, Myun) < i (Mhup) = ( )

dependent of uj,
where
° pf: X x X — R>q is a distance measure;
° I'Iﬁ : X — X a post-processing operator;
ot X — R>o an a posteriori error estimator.
¢ Reliability/Efficiency: An a posteriori error estimator is called*
o reliable, if
pi (U, T un) S nf (M) ;

o efficient, if identity

pr (U, Myun) 2 i (Miup) - |
¢ Objective: A posteriori error estimator 17,2 :X —R>g thatis identical, i.e.,
pi (U, Myup) = nf (Mhup) .

4We write A < Bif A < cB for a constant that does not depend on h > 0.




Content of the course

¢ Lecture 1: General convex duality theory
¢ Lecture 2: Convex duality theory for integral functionals

¢ Lecture 3: Convex duality theory for discrete integral functionals

¢ Lecture 4: Applications



Content of the Lecture 1

¢ Lecture 1: General convex duality theory
e The Prager—Synge—Mikhlin identity.
e Convex analysis.
e Lagrange duality theory.
e Fenchel duality theory.



The Prager—-Synge—Mikhlin identity



Function spaces

¢ Dirichlet/Neumann boundary: Let Q C RY, d € N, be a bounded Lipschitz domain
and

Mp,TnCON st TprUly=09Q.

Ip

¢ Sobolev spaces: For p € [1,+00), we define Q

WP (Q) = {v e LP(Q) | Vv € (L°(Q))’},
WiP(Q) = {ve WP(Q)|v=0aeonlp}.

¢ H(div)-spaces: For p € (1, +o0], we define

WP (div; Q) = {y € (L” (Q)) | divy € L (Q)},
WE (div; Q) = {y € WP'(div; Q) | (y - n, v)wi- 1 »(o) = O forall v € WiP(Q)},

where (y — y - n): WP'(div; Q) — (W'~5P(8Q))*, for every v € W'?(Q) defined by
y-n, Vw500 = /y~Vvdx+ / divyvdx,
Q Q

is the normal trace operator.




Prager—Synge identity

¢ Statement: A posteriori error identity
for both

v weak formulation;

v mixed formulation;

based on geometric argument.

Figure: LEFT: William Prager (23 May 1903 - 17 March 1980);
RIGHT: John Lighton Synge (23 March 1897 — 30 March 1995).

¢ Weak formulation: Seek u ¢ W}?(Q) s.t. for every v € W}?(Q), it holds that

/ Vu-Vvdx = /fvdx. (f € L2(Q))

¢ Mixed formulation: Seek (z,u) " € Wj(div; Q) x L*(Q) s.t. for every
(y,v)" € W3(div; Q) x L?(Q), it holds that

/z-ydx+/udivydx=0 (& z=Vu),
Q Q

(f € L(Q))
/divzvdx = —/fvdx (& divz= —f).
Q Q



Prager—Synge identity

Theorem: (Prager-Synge identity, cf. )
For every v € W}?(Q) and y € WZ(div=—f; Q), it holds that

1/|Vv—Vu|2dx+1/\yfz|2dx=1/|Vv—y|2dx.
2 Jq 2 Jq 2 Jq

(primal error) (dual error) (primal-dual gap)

¢ Proof (based on geometric argument).

o Orthogonality relation: Due to

/(y—z) (Vv —Vu)dx = /(dIVZ— (v—u)dx=0,
’ —f

we have that
y—z1lVv—vu in(L%(Q

= Using the Pythagoras theorem, we conclude that

/|Vv—Vu|2dx+/|y—z|2dx=/\Vv;Vu<r—’f—Y|2dX

=/\Vv—y|2dx. |
Q




Mikhlin estimate

¢ Statement: A posteriori error estimate
for only

v’ primal problem;

x dual problem;

based on convex duality argument.

Figure: Solomon Grigorjewitsch Mikhlin
(23 April 1908 - 29 August 1990).

¢ Primal problem: Seek u € W}?(2) minimal for I: W)*(Q) — R, for every v e W, *(Q)
defined by

I(v) :=%/Q|Vv|2dx—/ﬂfvdx. (f € L2(Q))

¢ Dual problem: Seek z € W(div=—f; Q) maximal for D: WZ(div=—f; Q) — R, for
every y € W3(div=—f; Q) defined by

Dy) =~ 5 [ W ax. (f € L)



Mikhlin estimate

Theorem: (Mikhlin estimate, cf. )

For every v € W}?(Q) and y € WZ(div=—f; Q), it holds that

2/|vaVu| dx < = /|vV y|*dx.

¢ Proof (based on convex duality argument).

o Ingredient 1: (strong convexity)
1 / |Vv — Vu|? dx < I(v) — I(u).
2 Jq

¢ Ingredient 2: (weak duality)

I(u) > D(y).
= Using the integration-by-parts formula, we conclude that

3 |19V =Vl ax< i) - Diy)
2 Ja = —divy

/|Vv| dx—f\vdx—&- /|y| dx
_—/|Vv| dx—/Vv-ydx+f/\y| dx. |
2 Q Q 2 Q



Prager—Synge—Mikhlin identity

Theorem: (Prager—Synge—Mikhlin identity)

For every v € W}?(Q) andy € W3(div=—f;Q), it holds that
1/ |Vv — Vul? dx + 1/ ly —z[*dx = 1/ |Vv —y|*dx.
2 Ja 2 Ja 2 /o

¢ Proof (based on convex duality argument).

o Ingredient 1: (optimal strong convexity)

1/|vaVu|2dx=I(v)fl(u),
2 Jq

p
E/W—aﬂu=ma_mn.
Q
o Ingredient 2: (strong duality)
I(u) =D(z).

= Using the integration-by-parts formula, we conclude that

3 [ vy =vuacs 3 [y—zac=iv) - [v) 06 - o)

=I(v) - D(y). N




Convex analysis



Convex, proper, and lower semi-continuous functionals

Definition: (convex functions)

Let X be a Banach space. Then, a functional F: X — R := R U {£oc0} is called

i) convex, if for every x,y € X and X € [0, 1], it holds that
FAx+(1=2)y) SAF(X) + (1= A)F(y),

whenever the right-hand side is well-defined, i.e., co — co does not occur.

ii) proper, if F(x) > —oo for all x € X and dom F # (), where
domF = {x € X | F(x) < oo},

denotes the effective domain of F.

ili) lower semi-continuous or I.s.c., if for every (X»)nen C X and x € X, it holds that
Xn =X inX (n— o0) F(x) < Iinrgiorng(x,,).

iv) We define

M(X):={F: X — R | F convex,l.s.c,and F > —oo} U { o0},
Fo(X) := {F € [(X) | F proper }.



Fenchel conjugate

Definition: (Fenchel conjugate)

Let X be a Banach space and F: X — R a functional.

Then, the Fenchel conjugate F*: X* — R, for every x* € X*, is defined by

F*(X*) = i:)’? {(X*,X>x — F(X)} .

Remarks
Properties: For every x* € X*, it holds that

F*(x*)= sup {(x",x)x —F(x)}, F(x)

e, F el (X");
Fenchel-Young inequality: For every x € X (xX*, X)x
and x* € X*, it holds that

X5 x)x SF(X7) + F(x),

—F*(x*)
with ‘=’ x* € OF(x), X"
Figure: Geometric interpretation of Fenchel
whenever co — co does not occur. conjugate in 1D.



Sub-differential

Definition: (sub-differential)

Let X be a Banach space. Then, F: X — R is called sub-differentiable at x € X if
F(x) # £oo and there exists x* € X*, a so-called sub-gradient, s.t.

F(y) > F(x) + (x*,y —x)x forally € X. *
Then, the sub-differential OF : X — 2X°, for every x € X, is defined by

] if F(x) = +o0,
{x* € X* | () applies} else .

OF(x) = {

Remarks
Consistency: If F: X — R is convex and
Gateaux-differentiable at x € X, then

OF(x) = {DF(x)} .
Optimality relation: If F: X — R is proper,
then
F(x) = inf F(y) 0 € OF(x). 0
yeX

Figure: Geometric interpretation in 1D.
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Fenchel bi-conjugate

Definition: (bi-conjugate)

Let X be a Banach space and F: X — R a functional.

Then, the Fenchel bi-conjugate F**: X — R, for every x € X, is defined by

F**(x) = 5“5* {{x* x)x= —F"(x")} .

X* e

Remarks
Properties: For every x € X, it holds that \ i
\ /
F*(x)= sup {(x",x)x —F"(x")} \ /
\ /
< F(x), \ /
\ /

ie,F* eT(X); \\ 7
Fenchel-Moreau Theorem: If F € ['(X), \\A / \ //

then for every x € X, we have that 0

FOO=F ()= sup {(x" x)x- —F ()}

X* e

Figure: Double-well potential F (blue)
and bi-conjugate F** ( ).




Lagrange duality theory




Lagrange duality theory

Definition: (saddle point)

Let X, Y be Banach spaces and L: X x Y* — R a Lagrange functional.

Atuple (u,z*)" € X x Y* is called saddle point of L: X x Y* — R if

inf sup. L(x,y*)=L(u,z") = sup infL(x,y").
XEX yxcy y* ey xeX

Neumann’s minimax theorem
L.1) Foreveryy* € Y*, it holds that

L(-,y") € To(X);

L.2) Forevery x € X, it holds that : *

—L(x,") € To(Y7);
L.3) There exists y; € Y* (or xo€X) s.t.

L(x,ys) w00 (IXllx = o),
(or  —L(x0,y") =00 (llylly= = 00)).



Lagrange duality theory

Definition: (primal problem & dual problem)

Let X, Y be Banach spaces and L: X x Y* — R a Lagrange functional.
I

The primal problem is given via the minimization
of I: X — R, for every x € X defined by

I(x) == sup L(x,y").
y*ey*

A minimizer u € X is called primal solution; /]\‘
Y, X

The is given via the maximization
of D: Y* — R, for every y* € Y* defined by

Dy™) = inf L(x,y").

A maximizer z* € Y* is called



Lagrange duality theory

Theorem: (weak duality & strong duality)

Let X, Y be Banach spaces and L: X x Y* — R a Lagrange functional.

i) A weak duality relation applies, i.e., ]

1
|
inf I(x) > sup D(y*); \+/
XEX yreyx Buatityigap >0

ii) A strong duality relation applies, i.e.,

|
|
(u) =D(z"), \i/’

Dualitylgap =0
if and only if (u,z*)" € X x Y*isa :
saddle pointof L: X x Y* — R. ,
Proof =
ad (i). inf I(x) = inf sup L(x,y"
XeX (x) XEXy*Ee* (x.y7) sup L(x,y")
> inf L(x,y" e .
2 2By > sup nfL(xy")
= sup D(y").
ey



Lagrange duality theory
Theorem: (weak duality & strong duality)

Let X, Y be Banach spaces and L: X x Y* — R a Lagrange functional.

i) A weak duality relation applies, i.e., ]

1
|
inf I(x) > sup D(y*); \+/
XEX yreyx Buatityigap >0

ii) A strong duality relation applies, i.e.,

|
|
' /
I(u) =D(z"), I
\4%@ gap=0
if and only if (u,z*)" € X x Y*isa
saddle pointof L: X x Y* — R.

Proof
ad (ii). Due to (i), it holds that

I(u) =D(z") sup L(u,y*) = infL(x,2")
yxey= xexX

s ey ) =t )= e gl teen).-



Fenchel duality theory




(Fenchel) primal problem

Definition: ((Fenchel) primal problem)
Let X, Y be Banach spaces, F € I'o(X), G € To(Y),and A € L(X;Y).

The (Fenchel) primal problem is given via the minimization of /: X — R U {+oco},
for every x € X defined by

I(x) = F(x) + G(AX) .

Example: Poisson problem
F € To(W3%(R)), for every v € W5?(Q), defined by

F(v) = 7/fvdx.
G € To((L*(2))%), for every y € (L*(R2))%, defined by
60) =5 | Iy ax.

A € L(WLH(Q); (LA(2))?), for every v € W32(Q),
defined by

Av:=VVvV. Figure: Moritz Werner Fenchel
(3 May 1905 - 24 January 1988).



(Fenchel) Lagrange functional

Proposition: ((Fenchel) Lagrange functional)

Let X, Y be Banach spaces, F € I'o(X), G € To(Y),and A € L(X;Y).

Then, the Lagrange functional L: X x Y* — R, for every (x,y)" € X x Y* defined by
L(x,y*) = F(x) + (y*, Ax)y — G*(y"),
induces the (Fenchel) primal problem, i.e., for every x € X, it holds that

I(x) = sup L(x,y").
y*ey*

Proof. For every y € Y, we have that
Gy)=G"(y)
= sup {(y".y)y =G (y)},

yrey*

so that for every x € X, it follows that
I(x) = F(x) + G(Ax)
F(x) + Sup, {&" M)y =G (y")}

sup {F + (", Ay =G (y")}

y*ey*



(Fenchel) dual problem

Proposition: ((Fenchel) dual problem)

Let X, Y be Banach spaces, F € I'o(X), G € To(Y),and A € L(X;Y).

Then, the (Fenchel) dual problem is given via the maximization of D: Y*— RU{—co},
for every y* € Y* defined by

D(y*) = —F'(=Ny") = G"(y").

Proof. For every y* € Y*, it holds that

D(y") = inf L(x,y™)
=mf{F + (", M)y —G™(y")}
=|nf{F + (" M)y} =G (YY)
= mf {F (Ny*, x)x} —G™(y")
= _ilé)'}’{ (=Ny", x)x = F(x)} = G*(y")
= —F(-Ny)-G'(y).
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Strong duality relation < Convex optimality relations

Lemma: (strong duality relation < convex optimality relations)
Let X, Y be Banach spaces, F € I'o(X), G € To(Y),and A € L(X;Y).

Foru € X and z* € Y*, the following statements are equivalent:
i) A strong duality relation applies, i.e., it holds that
I(u)=D(z");
ii) Convex optimality relations apply, i.e., it holds that

G*(z") — (", Au)y + G(Au) = 0,
F*(=N"Z") — (—N"Z",u)x + F(u) = 0.

Proof. By the Fenchel-Young inequality and (z*, Au)y = (A\*z*,u)x, it holds that
i 0=I(u) —D(z").
0={G"(z") — (z",Au)y + G(AU)} + {F"(—N"Z") — (=N"Z",u)x + F(u) } .
>0 >0




Fenchel’s duality theorem

Theorem: (Fenchel’s duality theorem, cf. )
Let X, Y be Banach spaces, F € I'o(X), G € To(Y),and A € L(X;Y).

If there exists xo € dom(F) with yg :== Axo € dom(G) s.t.
y—Yo inY G(y) — G(yo),
then there exists a dual solution z* € Y* and

Jg}‘( I(v) =D(z").

Corollary: (cf. )
Let the assumptions of Fenchel’s duality theorem | be satisfied.

If X is reflexive and I: X — R U {+o0} is (weakly) coercive, i.e.,
IX|lx = 400 I(x) = +o0,
then there exists a primal solution u € X, a dual solution z* € Y*, and

I(u) =D(z").



Thank You for today!



Examples of Fenchel conjugates




Examples: p-Dirichlet density
Example: (p-Dirichlet density)
Forp € (1,+00),let F: X =RY = R, d € N, for every x € R be defined by

F(x) = 1|x|p .
p
Then, F*: X* = R? — R, for every x* € RY, is given via
* * 1 * ¢
F(X)=[7|X|p- 0" =55
Proof. For every x* € RY we have that J=To
* * * 1
F*(x™) := sup {x X — f\x\p} .
xeRd p
The supremum is attained at xo € X if
0L i{x* x— 1|x\p}‘ — X" — xo" %o
dx p X=X ,
Xo = X" P 72x*.
0
Inserting xo € X, we obtain
Figure: F (blue) and F* ( ).

* * * 1 1 *p’
F*(x")=x 'X0—5|X0\p=E|X P .
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Examples: Inequality constraint

Example: (inequality constraint)

Let F: X =R — R, for every x € R, be defined by

0 ifx>0,
Pl =100 = {+oo eIse_

Then, F*: X* 2 R — R, for every x* € R, is given via

0 if x* <0,
+oo else .

F (x)=I1-(x") = {

Proof. For every x* € R, we have that
O—————=¢
F*(x") = sup {x"x — 1. (x)}
XER
= sup X'X
xeRzo

_Jo if x* <0,
T ) +oo else .
0 _

=1_(x").
Figure: F (blue) and F* (: ).



Examples: linear functional

Example: (linear functional)
Form e R, letF: X =R — R, for every x € R, be defined by

F(x):=mx.

Then, F*: X* 2R — R, for every x* € R, is given via

O ok o 0 if x*=m
F'(x*) =1 X)) = ’
) m (') {+oo else .

Proof. For every x* € R, we have that od / |

F*(x*) == sup{x"x —mx
( ) XER{ } 1l
= sup (X" —m)x '
XER |
I
_Jo ifx*=m, |
+oo else . '

3 /{m}(X*) .

HANEEEER

1 m
Figure: F (blue) and F* ( ).
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