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2 Summary
2.1 English summary

This research project aims at theoretical and experimental investigations on numerical methods for the
physical models for smart fluids, e.g., electro-rheological fluids (cf. [1, 2]), micro-polar electro-rheological
fluids (cf. [3, 4]), magneto-rheological fluids (cf. [5]), chemically reacting fluids (cf. [6, 7]), and thermo-
rheological fluids (cf. [8, 9]). Smart fluids have the potential for an application in numerous areas, e.g.,
in electronic, automobile, heavy machinery, military, and biomedical industry (cf. [10], for an overview).
All models mentioned above have a common characteristic: all models consist of coupled systems of elliptic
or parabolic partial differential equations containing the generalized Navier—Stokes equations with a time-
and space-dependent power-law index, the so-called unsteady p(t, x)-Navier—Stokes equations. The latter
seek in a bounded domain 2 C R?, d > 2, and over a time interval I := (0,7, 0 < T < oo, abbreviating

Qr=IxQand 'y := I x 09, for a velocity vector field v: Q7 — R? and a kinematic pressure q: Qr — R

such that
Oy v —divy S(-,-,Dyv) +divy (v v) + Vyqg=1 in Qr,
div,v=20 in QT,
(1)
v=0 onI'r,

v(0) = vy inQ,
where f: Qr — R% describes external forces and v : Q2 — R< is the initial velocity vector field at time ¢t = 0.
In the system (1), the extra stress tensor S: Qr x R¥¢ — RZX4 depends on the strain rate tensor D, v :=
2(Vov+VvT): Qr — RE and assumes for a.e. (t,z)" € Qr and all A € R¥*?, e.g., the form

Sym

S(t,x,A) = (6 + |Asym\)p(t’x)_2Asym,
where § > 0 and the power-law index p: Q1 — (1,+00) is at least (Lebesgue) measurable with
1 <p =essinfy,yreo,pt ) < pt = ess SUP(t,2) T P(t: ) < 00.

The time- and space-dependency of the power-law index in (1) results in a number of mathematical hurdles;
e.g., the invalidity of a Poincaré inequality, a Korn inequality, and a negative norm inequality (cf. [11, 12]).
Due to these hurdles, for two decades merely partial existence results could be established (cf. [13—16]).
Consequently, only a few numerical investigations have been carried out (cf. [17-23]). In the PhD thesis [11],
methods to overcome the hurdles mentioned above were developed and a thorough existence analysis for
the unsteady p(t, x)-Navier—Stokes equations (1) was established. The methods from the PhD thesis [11],
in the present research project, provide a firm foundation for a thorough numerical analysis: More precisely,

the present research project comprises the following two mutually connected work areas:

Work Area A: Finite element (FE) approximation of the steady p(x)-Navier—Stokes equations.

Work Area B: Finite element (FE) approximation of the unsteady p(¢, z)-Navier—Stokes equations.



2.2 German summary

Dieses Forschungsprojekt zielt auf theoretische und experimentelle Untersuchungen zu numerischen Me-
thoden flr die physikalischen Modelle von intelligenten Fliissigkeiten ab, z. B. elektro-rheologische Flissigkeit-
en (cf. [1, 2]), mikro-polar elektro-rheologische Flissigkeiten (cf. [3, 4]), magneto-rheologische Flissigkeiten
(cf. [5]), chemisch reagierende FlUssigkeiten (cf. [6, 7]) und thermo-rheologische Fliissigkeiten (cf. [8, 9]). Int-
elligente Flissigkeiten haben das Potenzial fiir die Anwendung in zahlreichen Bereichen, z.B. in der Elektronik-,
Automobil-, Schwermaschinen-, Militar- und biomedizinischen Industrie (cf. [10], fiir einen Uberblick).
Alle oben genannten Modelle haben ein gemeinsames Merkmal: alle Modelle bestehen aus gekoppelten
Systemen elliptischer oder parabolischer partieller Differentialgleichungen, welche die verallgemeinerten
Navier—Stokes-Gleichungen mit einem zeit- und ortsabhéngigen FlieB-Index enthalten, die sogenannten
instationdren p(t, x)-Navier-Stokes-Gleichungen. Letztere suchen in einem beschrankten Gebiet 2 C R4,
d > 2, und in einem endlichen Zeitintervall I := (0,7, 0 < T' < oo, nach einem Geschwindigkeitsvektorfeld

v: Qr — R? und einem kinematischen Druck q: Q7 — R, sodass

O v —divy S(, -, Dyv) +divy (v v) + Vg =1 in Qr,
div,v=20 inQr,

(2)
v=0 auf Tz,

v(0) = vo inQ,

wobei f: Qr — R¢ duBere Krafte beschreibt und vi: © — R? die Anfangsgeschwindigkjeit zum Zeitpunkt
= 0 ist. In dem System (2) hangt der Extra-Stresstensor S: Q7 x R¥*4 — Rglyxn‘f vom Scheerratentensor

D,v = $(V,v+V,v'): Qr — R4 abund hatfurf.a. (t,2)" € Q7 und alle A € R?*%, z. B. die Form

sym
S(t,x, A) i= (5 + |AWm|PE0 -2 g,
wobei § > 0 und der FlieB-Index p: Qr — (1, +00) mindestens (Lebesgue-)messbar ist mit
1 <p =essinfy ,y7eo,pt z) < pt = ess SUP(t,2) T P(t: ) < 00.

Die Zeit- und Ortsabhangigkeit des Flie3-Indexes in (2) flhrt zu einer Reihe von mathematischen Hiirden;
z. B. die Ungdltigkeit einer Poincaré-Ungleichung, einer Korn-Ungleichung und einer Negativen-Norm-
Ungleichung (cf.[11, 12]). Wegen dieser Hirden konnten fir zwei Jahrzehnte nur Teilexistenzresultate bewie-
senwerden (cf.[13—-16]). Folglich wurden nur wenige numerische Untersuchungen durchgefiihrt (cf. [17-23]).
In der Dissertation [11] wurden Methoden zur Uberwindung der oben genannten Hiirden entwickelt und eine
vollstandige Existenzanalyse fir die instationéren p(t, z)-Navier—Stokes-Gleichungen (2) durchgefiihrt. Die
Methoden der Dissertation [11] bilden in diesem Forschungsprojekt die Grundlage fiir numerische Analysen.

Genauer umfasst dieses Forschungsprojekt die folgenden zwei miteinander verbundenen Arbeitsbereiche:

Arbeitsbereich A: Finite-Elemente-(FE)-Approximation der stationaren p(x)-Navier—Stokes-Gleichungen.

Arbeitsbereich B: Finite-Elemente-(FE)-Approximation der instationdren p(¢, 2-)-Navier—Stokes-Gleichungen.



3 Scientific work and results report

3.1 Initial objectives and results of the project
Work Area A: Finite element (FE) approximation of the steady p(x)-Navier—Stokes equations.

This work area aims at theoretical and experimental investigations on a finite element (FE) approximation

of the steady p(xz)-Navier—Stokes equations and is divided into three work packages:
Work Package A1: Weak convergence of a finite element (FE) approximation.

Objective A1: The objective of this work package is to establish a general framework that allows to
conclude the well-posedness (i.e., existence of discrete solutions), stability (i.e., a priori estimates),
and weak convergence of a FE approximation of a steady problem, containing the steady p(x)-Navier—
Stokes equations as a particular case, for a possibly discontinuous power-law index p € L (2) with
p~>1(orp~ > % if the convective term is present) and general approximations (p)r>0 € L*(Q2)

satisfying p, — p (h — 0).

Result A1: This work package was substituted by Work Package B3, which was added to Work Area B
in the course of this research project. However, the findings of Work Package B2 can straightforwardly
be reduced to a finite element approximation of the steady p(x)-Navier—Stokes equations, so that

Work Package A1 indirectly is already partially completed and will be completed in the future.
Work Package A2: Error estimates for a finite element (FE) approximation.

Objective A2.1: An objective of this work package is to derive a priori error estimates for a finite ele-
ment approximation of the steady p(x)-Navier—Stokes equations, using Témam’s modification (cf. [24])
to discretize the convective term and a one-point quadrature rule to discretize the power-law index,
imposing slightly more resitrictive assumptions on the regularity of the kinematics pressure than

q € Wh'0)(Q), e.g., required in [21].

Result A2.1: In the case of an only Hélder continuous power-law index p € C%%(Q), a € (0,1], one
cannot hope for the “full” regularity F(-, Dv) € W2(Q; R¥*?) and ¢ € W1'()(Q), but instead it is
reasonable to expect (cf. [20, Rem. 4.5]) the “partial” regularity F(-, Dv) € N52(Q;R¥%), 3 € (0, 1],
where NW(Q; R?*4) denotes the Nikolskil space (cf. [25]). Concerning the kinematic pressure, it is
proposed to consider, e.g., the regularity ¢ € H*?'()(Q), v € (0, 1], where H'*'()(Q) denotes the
fractional variable Hajtasz—Sobolev space (cf. [26, 27]). If p€ C%¥(Q), a € (0, 1], with p— > %2, 6 >0,
F(-,Dv) € N?2(Q;R™4), g € (0,1],and ¢ € H"’')(Q), v € (g ey s it was established
(cf. [28, Cor. 6.2(6.3)]) that there exists a constant s > 1, which can chosen to be closeto 1if A > 0 is

close to 0, and a constant ¢y > 0 such that if [Dv][,(.) o < co, where r := min{2, p} € C**(Q), then
IFW(-, DvR) = Fn (- DV)[B o+ lan—all g S B2 [1+DvIPO%||1 g

128 [F(.,Dv)]?\/g,z(g) ©)
n hmin{z(pﬂ’}v(||(¢|Dv|)*(\V7q|) Le+l[V7q| ";tg)),ﬂ) '




The proof of the a priori error estimate (3) resorts to several fractional interpolation error estimates,
including special fractional interpolation error estimates tailored to the convective term. More precisely,
the latter was newly established in [28, Sec. 5]. Apart from that, different from initially expected, it
was possible to derive the a priori error estimate (3) without imposing any further regularity of the

pressure than the natural regularity one can usually expect as above.

Objective A2.2: An objective of this work package is to derive a priori error estimates for a finite
element approximation of the steady p(x)-Navier—Stokes equations (similar to (3)) in which the derived
error decay rates do not depend critically on the maximal and the minimal value of the power-law index,
ie,onp ,pt e (1,00).

Result A2.2: If p € C%*(Q), o € (0,1], withp~ > 2,6 > 0, F(-, Dv) € N%2(Q; R¥™9), 3 € (0,1],

and g € 7' 0(Q), 5 € (smryy - and (6 + [Dv]) 7 [V7g| € L2(9), it was established (cf

[28, Cor. 6.2(6.4)]) that there exists a constant s > 1, which can chosen to be closeto 1if A > 0 is

close to 0, and a constant ¢y > 0 such that if [Dv/|,(.) o < co, where r := min{2, p} € C**(Q), then

IFW (-, DvR) = Fn( DV) 3o+ lan—all g S B2 [1+DvIPO%|| g
+ WP [F(, DY) 52 (4)

2

p()
+ 02 ([0+Dv) 2 [Vl + IVl .0) -

Inthe case p~ > 2, f € L?(Q;R?), and a = B = v = 1, it has been established (cf. [28, Lem. 3.5(ii)])

p()—2

that from F (-, Dv) € W12(Q; R¥*%), it follows that (§ + |Dv|)~ 2 |Vq| € L?(Q), so that, in this case,

the additional regularity assumption on the kinematic pressure is reasonable. A similar statement for
the case a € (0, 1) could not yet be established (due to technical tools yet missing, the derivation of

which would have gone beyond the scope of this research project), but remains as a conjecture.
Work Package A3: Experimental investigation of a finite element (FE) approximation.

Objective A3.1: An objective of this work package is to investigate the influence of the a-Hélder regular-

ity of the power-law index p € C%%(Q), a € (0, 1], on the error decay rates via numerical experiments.

Result A3.1: According to [20, Rem. 4.5, if p € C%*(Q), a € (0, 1], one can only hope for the “partial”
regularity F(-, Dv) € N*2(Q; R%*%). In the case p~ > 2 and a = 1, it has been established (cf. [28,
Lem. 3.5()]) that from F(-, Dv) € W12(Q; R%*%), it follows that ¢ € W' ()(Q). A similar statement
for the case « € (0, 1) could not yet been established (due to technical tools yet missing, the derivation
of which would have gone beyond the scope of this research project), but remains as a conjecture.
Thus, in the a priori error estimates (3), (4), especially the case o = 3 = -y is relevant and, in this case,
the expected error decay rate depending on « € (0, 1] could be measured in numerical experiments (cf.
Result A3.2 and [28, Subsec. 7.2]). This dependence, however, may be traced back to the reduced reg-
ularity of the velocity vector field and the kinematic pressure as, in the case a € (0,1) and § = v =1,

the expected error decay rate depending on « € (0, 1] could not be measured yet (cf. Figure 1).
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Figure 1: Error decay for the same manufactured solution as in [28, Subsec. 7.2, (Case 1)], in the
case « € {0.0625,0.125,0.25,0.5,0.75,1.0} and 8 = v = 1: left: the power-lax index has a
point singularity at (0.0) "; right: the power-lax index has a line singularity along R(1.0)T.
Objective A3.2: An objective of this work package is to confirm the quasi-optimality of the a priori

error estimates (3), (4) derived in Work Package A3.1 via numerical experiments.

Result A3.2: The quasi-optimality of the a priori error estimates for the velocity vector field (3), (4) de-
rived in Work Package A3.1 was confirmed via numerical experiments (cf. [28, Subsec. 7.2]). However,
the quasi-optimality of the a priori error estimates (3), (4) for the kinematic pressure derived in Work

Package A3.1 could not yet be confirmed (cf. [28, Subsec. 7.2]).

Objective: A3.3: An objective of this work package is to investigate the influence of the choice of
quadrature points employed to discretize the power-law index in a finite element approximation of the

steady p(x)-Navier—Stokes equations on the error decay rates via numerical experiments.

Result A3.3: For the same manufactured solution as in [28, Subsec. 7.2, (Case 1)], numerical experi-
ment were carried out in which the power-law index is approximated either using nodal interpolation
into globally continuous element-wise polynomial functions or using a (local) L?-projection operator
onto element-wise polynomial functions, each of polynomial degrees pgcs € {1,...,6}. In each case,
no improvement compared to [28, Subsec. 7.2, (Case 1)] could be reported, neither in terms of the

smallness of error nor in terms of the asymptotic behaviour of the error decay (cf. Figure 2).
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Figure 2: Error decay for the same manufactured solution as in [28, Subsec. 7.2, (Case 1)] when the
power-law index is approximated using nodal interpolation into globally continuous element-
wise polynomial functions of polynomial degrees pacs € {1,...,6}. The same results were
reported when the power-law index is approximated using a (local) L2-projection operator
onto element-wise polynomial functions of polynomial degrees pges € {1,...,6}.
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Work Area B: FE approximation of the unsteady p(t, z)-Navier-Stokes equations.

This work area aims at theoretical and experimental investigations on a fully-discrete Rothe—Galerkin

approximation of the unsteady p(¢, x)-Navier—Stokes equations (1):

Work Package B1: Weak convergence of a fully-discrete Rothe—Galerkin approximation.

Objective B1: The objective of this work package is to establish a general framework that allows to
conclude the well-posedness (i.e., existence of iterates), stability (i.e., a priori estimates), and weak
convergence of a fully-discrete Rothe—Galerkin approximation of an unsteady problem, containing
the unsteady p(t, z)-Navier—Stokes equations (1) as a particular case, for a log-Hoélder continuous
power-law index p: Q1 — (1, +00) with p~ > 2 (or p~ > % if the convective term is present) and

general approximations (p} ), n>0 € L>(Qr) satisfying p; — p (7,h — 0).

Result B1: On the basis of the concept of the non-conforming Bochner condition (M) (cf. [29, Sec. 6]),
a general framework (cf. [29, Sec. 7]) was established that allows to conclude the well-posedness, sta-
bility, and weak convergence of a fully-discrete Rothe—Galerkin approximation for a log-Hdélder contin-
uous power-law index p: Q7 — (1, +o0) withp™ > 2 (orp™ > % if the convective term is present)
and general approximations (pj,)-nr>0 € L>(Qr) satisfying pj, — p (7,h — 0). This framework
applies to a large class of unsteady problems, including, e.g., the unsteady p(¢, x)-Stokes equations

(cf. [29, Subsec. 8.4]) and the unsteady p(t, x)-Navier—Stokes equations (cf. [29, Subsec. 8.5]).
Work Package B2: Experimental investigations on a fully-discrete Rothe—Galerkin approximation.

Objective B2: The objective of this work package is to confirm experimentally the weak convergence
of a fully-discrete Rothe—Galerkin approximation of the unsteady p(t, x)-Navier—Stokes equations (1),

in the case of low regularity data.

Result B2: Since the weak convergence of a fully-discrete Rothe—Galerkin approximation is difficult
to measure in numerical experiments, manufactured solutions with fractional regularity properties
were constructed, the fractional regularity parameters were gradually reduced, and error decay rates
that reduce with decreasing (but are stable for fixed) value of the fractional regularity parameter were

measured (cf. [29, Subsec. 9.3]). This gave an indication that weak convergence is —at least— likely.
Work Package B3: Error estimates for a fully-discrete Rothe—Galerkin approximation.

Objective B3: The objective of this work package is to derive a priori error estimates (similar to (3), (4))
for a fully-discrete Rothe—Galerkin approximation of the unsteady p(¢, z)-Navier—Stokes equations (1),
using Témam’s modification (cf. [24]) to discretize the convective term and a one-point quadrature rule
to discretize the power-law index, imposing only fractional regularity assumptions on the velocity vector

field and the kinematic pressure (similar to the Objectives A2.1 and A2.2 or the contributions [23, 28]).



Result B3: A priori error estimates (similar to (3), (4)) for a fully-discrete Rothe—Galerkin approximation
of the unsteady p(t, = )-Stokes equations, using a one-point quadrature rule to discretize the power-law
index, imposing only fractional regularity assumptions on the velocity vector field and the pressure have
been derived: more precisely, if p € CO(Qr), ay, ax € (0,1], i.e., forevery (t,2) ", (s,y)" € Qr,
we have that
Ip(t,z) — p(s, y)| S |t — s|™ + [ —y|™,

with p~ > 1,v € LPC)(Qr RONL(I; No2( RY)), 6, € (0, 1], with v(£) € W) (Q; RY) for ae.
t € I, F(,,,Dyv) € NO2(I; (L2(Q)™) 0 L2 (1; (N*2(Q))7), By € (3,1], Bx € (0,1], and
q € LPC)(Qr) with g(t) € H»=?' &) (Q)fora.e. t € Tand |V¥q| € L ) (Qr), v € (mmp ooy U
it was established (cf. [30]) that there exists a constant s > 1, which can chosen to be close to 1 if

7+ h > 0is close to 0, such that

K
e IV = vl + 3 7 1Bt Davl) = Bt Dev(t) o
h25x 2
S 5 Ve (rvox2 )
4 (2 4 h2ax)SUPte[||1 + |DIV|P(t,~)SHLQ (5)

+ 720 [F(-, va)]?\fﬁtaQ([;LQ(Q))

+ B (- Do) vaa)

+ 1o, v) " (e [V™q))1Qr -
In the a priori error estimate (5), by (v’,j)k:07.,,7K, K € N, we denote the iterates of a Rothe—Galerkin
approximation of the unsteady p(t, z)-Stokes equations employing a backward Euler step in time and
discretely inf-sup stable finite elements in space with respect to discretizations {Q} = 9, X T}, >0
of the time-space cylinder Q7. Here, {9, := {(tk—1,t%) }k=1,. K }r>o Withty = kT forallk =0, ..., K,
ie., T = % and {7}, } >0 a family of shape-regular and conforming triangulations of Q2. Moreover, the
non-linear mapping Fp,: Q7 x R4 — REX! forevery t € (ty_1,t3), k=1,..., K,z €T, T € I,

and A € R%*? is defined by
Fh(tv xz, A) = F(tka £T7 A) )
where the point &7 € T, for every T' € Ty, is an arbitrary quadrature point and the non-linear mapping

F: Qr x R4 — R4*d for every (t,z)" € Qrand A € RdXd, is defined by

sym?’

F(t, 2, A) = (§ + |AY™]) "5 Asvm

3.2 Description of the handling of research data generated in the project and any data
infrastructures used

The resulting data from the numerical experiments were published in preliminary publications (cf. [28, 29]).
To create the experiments the open source software package fenics has been used. The program code

used will be made publicly available after acceptance of the articles in scientific journals.
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p(-)-Navier-Stokes equations, submitted, 2023.
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